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Abstract. We apply the principles discussed in earlier papers to the construction of discrete
time quantum field theories. We discuss some of the issues concerned with the loss of Lorentz
covariance and its recovery in the appropriate limit. We use the Schwinger action principle to
find the discrete time free field commutators for scalar fields, which allows us to set up the
reduction formalism for discrete time scattering processes. Then we derive the discrete time
analogue of the Feynman rules for a scalar field with a cubic self-interaction and give examples
of discrete time scattering amplitude calculations. We find overall conservation of total linear
momentum and overall conservation of totalθ parameters, which is the discrete time analogue
of energy conservation and corresponds to the existence of a Logan invariant for the system.
We find that temporal discretization leads to softened vertex factors, modifies propagators and
gives a natural cut-off for physical particle momenta.

1. Introduction

This paper is the third in a series devoted to the construction of discrete time classical and
quantum mechanics, based on the notion that there is a fundamental interval of time,T .
The objective is to investigate the properties of a dynamics where continuity in time, and
hence differentiability with respect to time, has been abolished. With no velocities, there
are no Lagrangians in the ordinary sense, and then there are neither canonical conjugate
momenta nor Hamiltonians. It would then appear to be a catastrophic method for recasting
the laws of classical and quantum physics, but as we try to show in this paper, this is not
really the case. Moreover, there is every prospect of finding novel features of the dynamics
not encountered in continuous time mechanics which may go some way towards alleviating
the divergence problems encountered in conventional quantum field theory.

The first paper of this series, referred to aspaper I [1], introduced basic principles for
the temporal discretization of continuous time classical and quantum particle mechanics.
The second paper, referred to aspaper II [2], applied these principles to classical field
theory, including gauge invariant electrodynamics and the Dirac field. These papers should
be consulted for further explanation of our notation and methodology. In this paper, referred
to aspaper III , we apply the techniques ofpaper I to the quantization of the scalar field
systems studied inpaper II, i.e. we discuss quantized discrete time scalar field theory.

Following the analysis of the earlier papers, we denote byD our process of discretizing
time using virtual paths and byQ the process of quantization using transition amplitudes
based on the system function, each of these processes being applied to some classical
LagrangianL. Then we can say thatpaper I discusses models of typeDL andQDL
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whereaspaper II discusses models of typeDL, whereL is a Lagrange density. Now since
such a density may be associated with the first quantization of a classical theory, i.e. to
QL models, as discussed inpaper II for the Schr̈odinger equation, models of typeDL
may be regarded as equivalent in some sense to those of typeDQL. This allows a direct
comparison of the processesDQ andQD, and inpaper II it was argued that these are not
the same in general.

This paper considers models of typeQDL. Because such models may be regarded as
equivalent in the above sense to those of typeQDQL, then paper III may be considered
to be a discussion of discrete time second quantization. Note, however, that theQDQ
process used in this paper is not in general equivalent to the processDQQ because theD
andQ processes do not commute. This means that our paper discusses the quantization
of discrete time classical field theories and not the temporal discretization of quantum
field theories, such as in lattice gauge theories. In the latter, discretization is regarded
as an approximation which becomes exact in the continuum limit. In our approach our
mechanics is regarded as exact at each stage and the continuum limit is taken only to
make comparisons with standard formulations. This is a significant difference between our
approach and various other formulations using a discrete time, because of our insistence on
adhering to the principles of the formulation at all stages. In particular, the constants of
motion are constructed to be exact and not approximately conserved up to some powers of
T .

An important question which arises naturally in the context of discrete time and/or
space mechanics is that of Lorentz covariance. Our answer is that Lorentz symmetry of say
scattering matrix elements emerges in the appropriate limit, such asT → 0, and other than
that, is not really something to worry about, as it is regarded here as an approximation to
a deeper underlying structure. An analogy with representational art is useful here. If we
liken continuous time theories to pictures drawn on normal canvas, then our discrete time
mechanics is a picture drawn on a conventional analogue television screen. In the former
model of spacetime it is frequently speculated that continuity might break down, perhaps at
Planck scales (we do know that a real canvas is made up of atoms), but otherwise, continuity
on the plane of the canvas exists at all levels and carries with it all the associated symmetries
of the plane, such as translation and rotational invariance. On a television screen, however,
we have two perspectives. From a distance, a television picture really does look like one
painted on a canvas, but a closer look would readily show the horizontal lines which make
up the picture. There is a discreteness vertically, but a continuity horizontally. Likewise,
in discrete time mechanics, there is a discreteness along the time axis with all the normal
continuity along the space axis. Like a television picture, there is less symmetry when
viewed close up than when viewed at a distance, and it would be futile and in principle
wrong to try to pretend that such long-distance symmetries should exist at all scales. What
we are doing, therefore, is more like exploring the mechanics of a television set rather than
the pictures drawn on it. This suggests that discretization of time in the context of general
relativity is an obvious candidate for investigation.

The art analogy can be pursued further. Discretisation of space as well as time, such as
in lattice gauge theories and the work of authors such as Benderet al [3] and Yamamoto
et al [4], gives a lattice spacetime picture which corresponds to what occurs on a computer
monitor, where the picture is fully digitized. This form of discrete spacetime mechanics is
inherently different to our discrete time mechanics and the two should not be confused.

Another important question related to the issue of Lorentz covariance is:In which
inertial frame are we discretizing time?Of course, if we believed in an absolute time
in the strict sense of Newton then we would have an immediate answer. However, we
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are approaching discrete time from a more modern perspective and the problem is a very
real one for us. Our answer is to go beyond special relativity and consider cosmological
perspectives. It is an empirical fact that, from the point of view of observers on the earth,
we are moving at a speed of about 500–600 km s−1 relative to a frame of reference in which
the cosmic background radiation field of Penzias and Wilson is isotropic [5] (the so-called
dipole effect). According to the cosmological principle, we should be able to find a local
inertial frame in the neighbourhood of each point in space time with the same property,
i.e. one in which the cosmic background radiation field is isotropic to a very high degree,
except for tiny ripples equivalent to those recently observed by COBE [6]. This frame
should be unique at each point, up to spatial rotations. We will refer to this frame as the
local absolute frame.

If we let our universe be reasonably well described via a Robertson–Walker metric,
then as we change position and time we expect the local absolute frame to change as well.
However, it will always be empirically identifiable at each place and time in the universe.
The standard coordinate time in such a frame is called the proper or comoving time in
the usual formulation of Robertson–Walker cosmology, and represents the proper time of a
point particle (or galaxy) at rest relative to the local cosmic mass distribution. In answer to
the question posed above, we suggest that time is discretized via local absolute frames.

Care should be taken to keep in mind that throughout this paper, when we discuss
Minkowski spacetime and its temporal discretization, we are really referring to local inertial
frames. Of course, there is the additional question of local variations due to gravitational
disturbances arising from locally inhomogeneous matter densities. Answering this question
amounts to constructing a discrete time analogue of general relativity, which will be reserved
for a subsequent paper in this series. Since we are interested in applications to particle
theory in this paper, we will not consider these issues further here, except to make a final
observation about this line of thought. If we were discretizing space as well as time (which
we are not), we would have to consider the additional question:How are we discretizing
space? If we were choosing the simplest sort of discretization scheme, a cubic lattice
(say), then we would have to specify three spatial orthogonal Cartesian axes. Until recently
there was no evidence of any spatial anisotropy on truly cosmological scales, so we had
no criterion for picking out any special directions in space. We note, however, the very
recent observation of the so-calledcorkscrew effectreported by Nodland and Ralston [7],
which if confirmed will require a re-assessment of the position. The comic background
radiation field, however,does give us a working prescription for picking out a unique
timelike direction at each point.

Because of the relatively greater complexity of discrete time field theory compared with
conventional field theory, in this paper we have restricted our attention to scalar fields. The
general features found here should find their direct analogues with the Dirac and Maxwell
fields. We reserve the further discussion of these fields to the next papers in this series. Our
principal aim in this paper is to discuss how the process of discretizing time alters Feynman
rules for scattering amplitudes and scattering cross sections. Issues of renormalization are
left for later papers in the series. An important feature of the present investigation is the
discrete time oscillator, which is directly related to free particle states used to definein and
out states.

In section 2 we discuss the quantization of scalar fields, using Schwinger’s action
principle to derive ground-state expectation values of time ordered products. Then in
section 3 we apply these methods to the free neutral scalar field. The results are in agreement
with the more direct calculation of the quantized discrete time harmonic oscillator discussed
in paper I. We examine in more detail the free scalar field propagator and the free field
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commutators, the results being consistent with the vacuum expectation values discussed
previously. We find that the free particle creation and annihilation operators have a natural
cut-off in physical particle state momenta, corresponding to what we call theelliptic regime.
Although it is possible to construct linear invariants of the motion outside this regime, states
associated with such operators have various expectation values which diverge or tend to zero
in the infinite time limit, and this makes them unsuitable for representing physical particles.
If T is the fundamental time interval and the discrete time analogue of energyE is defined
by E =

√
p · p+m2 in natural units (wherec = h̄ = 1), then our formulation leads to the

conditionT E <
√

12 for physicalin or out particles, which we call theparabolic barrier.
This barrier manifests itself in a number of ways. For example, the particle flux density
associated with each creation operator is found to be modified by a factor

√
1− T 2E2/12,

which makes physical sense only in the elliptic regime.
We then turn to interacting scalar fields theories. In section 4 we set up the discrete

time reduction formulae needed to calculate scattering cross sections and then discuss the
perturbative expansion of the vacuum expectation values of discrete time-ordered products
for a specific example,ϕ3 scalar field theory. We give the discrete time analogues of the
Feynman rules in configuration space and in momentum space. In section 5 we present a
scattering calculation for the box diagram to illustrate the formalism and then give general
rules for scattering amplitudes. Finally, in section 6 we give a number of applications of
our scattering amplitude rules. We find that in each case there is a conserved quantity in
scattering processes analogous to energy, related to the existence of what we call a Logan
invariant of the system function. Fortunately, the LSZ formalism is powerful enough to
reveal the existence of such a Logan invariant in a scattering process without the need to
find it explicitly for the fully interacting system.

Our analysis reveals that forϕ3 interactions our discrete time Feynman rules involve
vertex softening in the basic diagrams, before any renormalization effects are considered.
This may be a significant feature of more realistic interactions. Also, the propagators
associated with internal lines are modified and we use them to show how Lorentz covariance
can emerge as an approximate symmetry of the mechanics. There is therefore some prospect
of our programme making some progress towards the alleviation, if not complete removal,
of divergences in the traditional renormalization programme of continuous time relativistic
quantum field theory.

2. The discrete time quantized scalar field

We turn now to the quantization of the neutral scalar field. Following the methodology and
notation discussed inpapers I and II, particularly the discussion inpaper I on the quantized
inhomogeneous oscillator, the discrete time system function for a system with a scalar field
ϕ degree of freedom coupled to a sourcej is chosen to be given by

Fn[j ] = Fn + 1
2T

∫
d3x {jn+1ϕn+1+ jnϕn} (1)

whereFn ≡ ∫ d3xFn is the system function in the absence of the source. There are other
ways of introducing sources into the system, but the above method was found to be most
practical. Since these sources are eventually switched off, it does not really matter how
they are introduced, as long as they are dealt with consistently according to the principles
of discrete time mechanics.



Principles of discrete time mechanics: III 981

With the above system function the Cadzow equation of motion [2, 8] is

δ

δϕn(x)
{Fn + Fn−1} + Tjn(x)=

c
0 (2)

which reduces to
∂

∂ϕn
{Fn + Fn−1} − ∇ · ∂

∂∇ϕn {F
n + Fn−1} + Tjn =

c
0 (3)

whereFn is the system function density in the absence of sources. Here we use the symbol
=
c

to denote an equality holding over a true or dynamical classical trajectory.

The action sumANM
[
j
]

in the presence of sources for evolution between timesMT

andNT is

ANM [j ] = ANM + 1
2T

∫
d3x {jMϕM + jNϕN } + T

N−1∑
n=M+1

∫
d3x jnϕn M < N. (4)

Use of the discrete time Schwinger action principle [1]

δ〈φ,N |ψ,M〉j = i〈φ,N |δÂNM [j ]|ψ,M〉j M < N (5)

leads to the functional derivatives
−i

T

δ

δjM(x)
〈φ,N |ψ,M〉j = 1

2
〈φ,N |ϕ̂M(x)|ψ,M〉j

−i

T

δ

δjn(x)
〈φ,N |ψ,M〉j = 〈φ,N |ϕ̂n(x)|ψ,M〉j M < n < N

−i

T

δ

δjN(x)
〈φ,N |ψ,M〉j = 1

2
〈φ,N |ϕ̂N (x)|ψ,M〉j .

(6)

Also, we find

−i

T

δ

δjn(x)

−i

T

δ

δjm(y)
〈φ,N |ψ,M〉j = 〈φ,N |ϕ̂m(y)ϕ̂n(x)|ψ,M〉j [2m−n + 1

2δm−n]

+〈φ,N |ϕ̂n(x)ϕ̂m(y)|ψ,M〉j [2n−m + 1
2δm−n] (M < m, n < N) (7)

where2n and δn are the discrete time step function and discrete time delta defined in
paper I. We will write (7) in the form

−i

T

δ

δjn(x)

−i

T

δ

δjm(y)
〈φ,N |ψ,M〉j = 〈φ,N |T̃ ϕ̂n(x)ϕ̂m(y)|ψ,M〉j (M < m, n < N)

(8)

whereT̃ denotes discrete time ordering as discussed inpaper I.
In applications we will normally be interested in the scattering limitN = −M → ∞

and in matrix elements involving the in and out vacua. We shall restrict our calculations to
such matters. This means we will discuss ther-point functions defined by

Gj
n1n2...nr

(x1, . . . ,xr ) = 〈0
out|T̃ ϕ̂n1(x1) . . . ϕ̂nr (xr )|0in〉j

〈0out|0in〉j

= 1

Z[j ]

−iδ

T δjn1(x1)
. . .

−iδ

T δjnr (xr )
Z[j ] (9)

where

Z[j ] = 〈0out|0in〉j (10)
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is the ground-state (vacuum) functional in the presence of the sources andT̃ denotes discrete
time ordering.

An important question here concerns the existence of the ground state. Similarly to
most continuous time field theories, we have no general proof that a ground state exists
for interacting discrete time field theories. Moreover, in discrete time mechanics there is
no Hamiltonian as such, so the question becomes more acute. However, for free fields,
there will be what we refer to as a compatible operator corresponding to some appropriate
Logan invariant [1, 10]. This is the nearest analogue to the Hamiltonian in continuous
time theory. Moreover, the appropriate compatible operator for free neutral scalar fields is
positive definite and this allows a meaning for the in and out vacua to be given.

3. The discrete time free scalar field

3.1. The free scalar field propagator

Given the continuous time Lagrange density

L0 = 1
2∂µϕ∂

µϕ − 1
2µ

2ϕ2 (11)

we use the virtual path approach discussed in [2] to find the system function density

Fn0 =
(ϕn+1− ϕn)2

2T
− T

6
(∇ϕ2

n+1+∇ϕn+1 · ∇ϕn +∇ϕ2
n)−

µ2T

6
(ϕ2
n+1+ ϕn+1ϕn + ϕ2

n).

(12)

In the presence of the sources we take

Fn0 [j ] = Fn0 + 1
2T

∫
d3x {jn+1ϕn+1+ jnϕn} (13)

and then the Cadzow equation of motion is

ϕn+1− 2ϕn + ϕn−1

T 2
+ (µ2−∇2)

(ϕn+1+ 4ϕn + ϕn−1)

6
=
c
jn. (14)

We now define the spatial Fourier transforms

ϕ̃n(p) ≡
∫

d3x e−ip·xϕn(x)

j̃n(p) ≡
∫

d3x e−ip·xjn(x)

(15)

and then the equation of motion becomes{
(Un − 2+ U−1

n )

T 2
+ E2 (Un + 4+ U−1

n )

6

}
ϕ̃n(p)=

c
j̃n(p) (16)

whereE ≡
√
p · p+ µ2 andUn is the classical temporal displacement operator defined by

Unfn ≡ fn+1 (17)

for any variable indexed byn. The solution to (16) with Feynman scattering boundary
conditions is

ϕ̃n(p) = ϕ̃(0)n (p)− T
∞∑

m=−∞
1̃n−m
F (p)j̃m(p) (18)
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whereϕ̃(0)n (p) is a solution to the homogeneous equation

{ (Un − 2+ U−1
n )

T 2
+ E2 (Un + 4+ U−1

n )

6
}ϕ̃(0)n (p) = 0 (19)

and 1̃n
F (p) is the discrete time Feynman propagator in momentum space satisfying the

equation {
(Un − 2+ U−1

n )

T 2
+ E2 (Un + 4+ U−1

n )

6

}
1̃n
F (p) = −

δn

T
. (20)

This equation for the propagator may be written in the form

{Un − 2ηE + U−1
n }1̃n

F (p) = −0Eδn (21)

where

0E = 6T

6+ T 2E2
ηE = 6− 2T 2E2

6+ T 2E2
. (22)

Using our experience with the discrete time harmonic oscillator propagator discussed in
paper I, we may immediately write down the solution for the propagator in the form

1̃n
F (p) =

0E

2i sinθE
e−i|n|θE = 0E

2i sinθE
{e−inθE2n + δn + einθE2−n} (23)

where ηE = cosθE . As discussed inpaper I, this expression holds for the elliptic
and hyperbolic regimes with suitable analytic continuation. In the continuous time limit
T → 0, nT → t, we recover the usual Feynman propagator in a spatially Fourier
transformed form, namely

lim
T→0,n→∞,nT=t

1̃n
F (p) = −

i

2E
{e−itEθ(t)+ eitEθ(−t)}

=
∫

dω

2π

e−iωt

ω2− p · p− µ2+ iε

= 1̃F (p, t) =
∫

d3x e−ip·x1F(x, t). (24)

Turning to the quantization process, the functional derivative satisfies the rule

δ

δjn(x)
jm(y) = δn−mδ3(x− y). (25)

With the definition
δ

δj̃n(p)
≡ 1

(2π)3

∫
d3x eip·x δ

δjn(x)
(26)

we find
δ

δj̃n(p)
j̃m(q) = δn−mδ3(p− q) (27)

and then

〈0out|ϕn(x)|0in〉j = − i

T

δ

δjn(x)
Z[j ] (28)

gives

〈0out|ϕ̃n(p)|0in〉j = − i(2π)3

T

δ

δj̃n(−p)
Z[j ]. (29)
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Hence we find

Z0[j ] = Z0[0] exp

{
− 1

2iT 2
∞∑

n,m=−∞

∫
d3x d3y jn(x)1

n−m
F (x− y)jm(y)

}
(30)

where

1n
F (x) =

∫
d3p

(2π)3
eip·x1̃n

F (p). (31)

This propagator satisfies the equation{
Un − 2+ U−1

n

T 2
+ (µ2−∇2)

(Un + 4+ U−1
n )

6

}
1n
F (x) = −

δn

T
δ3(x). (32)

3.2. The free field commutators

In this section we use (30) to obtain the vacuum expectation value of the free field
commutators. Writing the propagator (23) in the form

1̃n
F (p) = cE [z−n2n + δn + zn2−n] (33)

we then find for the elliptic and hyperbolic regimes

cE = −i
√

3

E
√

12− T 2E2
T E <

√
12

= −3

E
√
T 2E2− 12

T E >
√

12. (34)

An application of (9) gives

〈0|ϕ̂n+1(x)ϕ̂n(y)|0〉 = i11
F (x− y) (35)

from which we deduce

〈0|[ϕ̂n+1(x), ϕ̂n(y)]|0〉 = −6iT
∫

d3p

(2π)3
eip·(x−y)

6+ (p · p+ µ2)T 2

= −6i

4πT |x− y|e
−
√
µ2+6/T 2|x−y|. (36)

Both elliptic and hyperbolic regions of momentum space contribute to this result, which has
the form of a Yukawa potential function.

We now turn to the direct approach to quantization discussed inpaper I. If we define
the momentumπn(x) conjugate toϕn(x) via the ruleπn(x) ≡ − δ

δϕn(x)
F n then(12) gives

πn ≡ ϕn+1− ϕn
T

+ T
6
(µ2−∇2)(ϕn+1+ 2ϕn) (37)

for the free field. The naive canonical quantization discussed inpaper I is equivalent in
field theory terms to

[π̂n(x), ϕ̂n(y)] = −iδ3(x− y) (38)

from which we deduce

[ϕ̂n+1(x), ϕ̂n(y)] = −6iT
∫

d3p

(2π)3
eip·(x−y)

6+ (µ2+ p · p)T 2

= −6i

4πT |x− y|e
−
√
µ2+6/T 2|x−y| (39)
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assuming [̂ϕn(x), ϕ̂n(y)] = 0. This is consistent with the approach to quantization via the
Schwinger action principle from which we obtained (36).

We note that the reason this works is that the system function for a free field is an
example of what we call anormal systemin paper I. For interacting field theories this
will no longer be the case and then the commutators analogous to the above will probably
no longer bec-functions. We recall that in continuous time field theories, interacting field
commutators are not canonical in general either, so the analogies between discrete and
continuous time mechanics also hold well here.

For the free field particle creation and annihilation operators we define the variables

an(p) = i0−1
E einθE [ϕ̃n+1(p)− eiθE ϕ̃n(p)] (40)

where

0E = 6T

6+ T 2E2
ϕ̃n(p) =

∫
d3x e−ip·xϕn(x) (41)

and the momentump is restricted to the elliptic region. Then we find

[ân(p), â
+
n (q)] = 2E

√
1− T 2E2/12(2π)3δ3(p− q) (42)

when we quantize and use(39). This tends to the correct continuous time limit asT → 0.
If we interpret the factor 2E

√
1− T 2E2/12 in the above as a particle flux density

then this will be indistinguishable from the conventional density 2E in continuous time
field theory for normal momenta, but falls to zero as the parabolic barrierT E = √12 is
approached from below. This suggests that there is in principle a physical limit to the
possibility of creating extremely high momentum particle states in the laboratory or of
observing such particles in cosmic rays. This should have an effect on all discussions
involving momentum space, such as particle decay lifetime and cross section calculations,
and in the long term, on unified field theories.

4. Interacting discrete time scalar fields

4.1. Reduction formulae

In applications to particle scattering theory we shall be interested in incoming and outgoing
physical particle states, with individual particle energies satisfying the elliptic condition
T E <

√
12. We note that energy is defined here via the linear momentump by the rule

E ≡ +
√
p · p+ µ2. (43)

This is theonly meaning we give to the termenergy.
Given the annihilation and creation operators

ân(p) = i0−1
E

∫
d3x einθE−ip·x[ϕ̂n+1(x)− eiθE ϕ̂n(x)]

â+n (p) = −i0−1
E

∫
d3x e−inθE+ip·x[ϕ̂n+1(x)− e−iθE ϕ̂n(x)]

(44)

where

0E = 6T

6+ T 2E2
cosθE ≡ ηE = 6− 2T 2E2

6+ T 2E2
(45)

then a direct application of the standard reduction formalism gives the reduced matrix
elements

〈αout|(T̃ ζ̂ )â+in(p)|β in〉R = i
∞∑

n=−∞

∫
d3x e−inθE+ip·x−−→Kn,p〈αout|T̃ ζ̂ ϕ̂n(x)|β in〉 (46)
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and

〈αout|âout(p)T̃ ζ̂ |β in〉R = i
∞∑

n=−∞

∫
d3x einθE−ip·x−−→Kn,p〈αout|T̃ ζ̂ ϕ̂n(x)|β in〉 (47)

whereζ̂ denotes any collection of field operators and

−−→
Kn,p ≡ 0−1

E (Un − 2ηE + U−1
n ). (48)

Using these results we can readily write down the scattering matrix for a process consisting
of r incoming physical momentum particles with momentap1,p2, . . . ,pr and s outgoing
particles with momentaq1, q2, . . . , qs .

4.2. Interacting fields: scalar field theory

We turn now to interacting scalar field theories based on continuous time Lagrange densities
of the form

L = L0− V (ϕ). (49)

In order to illustrate what happens in discrete time quantum field theory, we shall discuss
the details of a scalar field with aϕ3 interaction term, deriving the analogue of the Feynman
rules.

In the presence of sources the above Lagrange density leads to the system function

Fn[j ] = Fn(0) − T
∫ 1

0
dλ
∫

d3xV (ϕ̃n)+ 1
2T

∫
d3x {jnϕn + jn+1ϕn+1} (50)

where we use the virtual paths

ϕ̃n(x) ≡ Uλ
n ϕ(x) = λϕn+1(x)+ λ̄ϕn(x) 06 λ 6 1 λ̄ ≡ 1− λ (51)

as discussed inpaper II for neutral scalar fields. Here and below we shall find the operator

Uλ
n ≡ λUn + λ̄ (52)

particularly useful, whereUn is the classical temporal displacement operator defined by
(17). The vacuum functional is now defined via the discrete time path integral

Z[j ] =
∫

[dϕ] exp{iA[j ]}

≡
∞∏

n=−∞
(

∫
x

[dϕn]) exp{iA[j ]} (53)

where

A[j ] ≡
∞∑

n=−∞
Fn[j ] =

∞∑
n=−∞

Fn(0)[j ] − i6
∫
nλx

V (ϕ̃n) (54)

and theϕnare functionally integrated over their spatially-indexed degrees of freedom. In
the above and subsequently we shall use the notation

6

∫
nλx

≡ T
∫ 1

0
dλ

∞∑
n=−∞

∫
d3x (55)

whenever such a particular combination of spatial integration, summation, and virtual path
integration occurs. This replaces the four-dimensional integral

∫
d4x ≡ ∫ dt d3x found in

normal relativistic field theory.
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We now postulate our quantum dynamics to be governed by the equation∫
[dϕ]

[
δ

ϕn(x)
{Fn + Fn−1} + Tjn(x)

]
exp{iA[j ]} = 0 (56)

which is equivalent to a vacuum expectation value of the Heisenberg operator equations of
motion derived formally from Cadzow’s equation (2). Integrating by parts, we arrive at the
more convenient expression

Z[j ] = exp

{
− i6
∫
nλx

V (Dnλx)
}
Z0[j ] (57)

where

Z0[j ] ≡
∫

[dϕ] exp

{
iT

∞∑
n=−∞

∫
d3x (Fn0 + jnϕn)

}
= Z0[0] exp

{
− 1

2iT 2
∞∑

n,m=−∞

∫
d3x d3y jn(x)1

n−m
F (x− y)jm(y)

}
(58)

and

Dnλx ≡ −i

T
Uλ
n

δ

δjn(x)

= −i

T

{
λ

δ

δjn+1(x)
+ λ̄ δ

δjn(x)

}
. (59)

Turning now toϕ3theory, we recall that with hindsight the potentialV (3)(ϕ) is normally
taken to have the form

V (3)(ϕ) = g

3!
{ϕ3− 0ϕ} (60)

where the (infinite) subtraction constant0 is formally given by

0 = 3i1F(0). (61)

This has the role of cancelling out self-interaction loops at vertices in the Feynman rules
expansion programme. We find that for discrete time, the same effect is achieved by taking
the potential to have the form

V (3)(ϕ̃n) = g

3!
{ϕ̃3
n − 0̃ϕ̃n} (62)

where

0̃ = 2i10
F (0)+ 1

2i[11
F (0)+1−1

F (0)]. (63)

The first objective is to find a perturbative expansion forZ[j ], which we write in the
form

Z[j ] = Z0[j ] + Z1[j ] + Z2[j ] + · · · (64)

where

Zp[j ] ≡ − i

p
6

∫
nλx

V (3)(Dnλx)Zp−1[j ] p = 1, 2, . . . . (65)

Having foundZ[j ] we then calculate the required vacuum expectation value of time-ordered
products of fields by functional differentiation in the standard way. The results lead to a set
of rules for a diagrammatic expansion analogous to the Feynman rules in continuous time
theory, with specific differences. The details of the calculations are omitted here as they
are routine and tedious, but the results are as follows.
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4.3. Feynman rules for discrete time-ordered products

The objective in this section is to present the rules for a diagrammatic expansion of scattering
amplitudes in the absence of external sources. The latter are used merely to provide an
internal handle on the correlation functions of the theory and are set to zero at the end of
the day. This programme is carried out in two stages. In this section we give the rules for
the evaluation of successive terms in a Feynman diagram type of expansion for the vacuum
expectation value of the time-ordered product

〈0out|T̃ ϕ̂1(x1)ϕ̂2(x2) . . . ϕ̂k(xk)|0in〉 (66)

with k discrete time scalar fields; we shall give the rules for a system with interaction given
by (62), so the expansion is effectively in powers in the coupling constantg:

(1) first find the ordinary continuous time Feynman rules in spacetime;
(2) draw all the different diagrams normally discussed in this programme;
(3) for a given diagram withV vertices andI internal lines find its conventional

weighting factorω, such as the well known factor of1
2 for the simple loop inϕ3 theory;

(4) at each vertex, associate a factor

igT6
∫
mλz

≡ igT
∫ 1

0
dλ

∞∑
m=−∞

∫
d3z (67)

(5) for each external line running from the external point(n,x) to a vertex with indices
(m, λ,z) assign a propagator

iUλ
m1

m−n
F (z − x) (68)

(6) for each internal line running from vertex(m1, λ1, z1) to vertex(m2, λ2, z2) assign
a propagator

iUλ1
m1
Uλ2
m2
1
m2−m1
F (z2− z1) (69)

(7) apply theλ integrals.
It is in general much more convenient to perform the virtual path integrations (over

the λ’s) after the diagrams have been written down rather than before the diagrammatic
expansion. In many cases the operatorUλ

m acting on an external propagator can be
transferred to act on internal propagators using the rule

∞∑
m=−∞

(Uλ
mfm)gm =

∞∑
m=−∞

fmŪ
λ
mgm (70)

for any indexed functionsfn, gn, where we define

Ūλ
mgm ≡ λU−1

m gm + λ̄gm = λgm−1+ λ̄gm. (71)

However, this does not work so conveniently whenever two or more external lines meet at
the same vertex.

To illustrate these rules in operation consider the conventional perturbation theory
expansion of the time-ordered product〈0|T ϕ̂(x1)ϕ̂(x2)|0〉 in powers of the coupling constant.
The conventional Feynman rules give the expansion

〈0|T ϕ̂(x1)ϕ̂(x2)|0〉 = i1F(x1− x2)− 1
2g

2
∫

d4z1 d4z21F(x1− z1)1F (z1− z2)

×1F(z2− z1)1F (z2− x2)+O(g4). (72)

The second term on the right-hand side corresponds to the single loop diagram withV = 2,
I = 2 in ϕ3 scalar theory and is divergent. Part of the motivation for investigating discrete
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time field theory is the hope that the corresponding diagram might be modified in some
significant way.

Using the rules outlined above the analogue expansion in discrete time gives

〈0|T̃ ϕ̂n1(x1)ϕ̂n2(x2)|0〉 = i1n1−n2
F (x1− x2)− 1

2g
26

∫
m1λ1z1

6

∫
m2λ2z2

{Uλ1
m1
1
m1−n1
F (z1− x1)}

×{Uλ1
m1
Uλ2
m2
1
m2−m1
F (z2− z1)}{Uλ2

m2
Uλ1
m1
1
m1−m2
F (z1− z2)}

×{Uλ2
m2
1
m2−n2
F (z2− x2)} +O(g4). (73)

For this particular process the second term on the right-hand side can be rewritten using
the rule (70) to give

〈0|T̃ ϕ̂n1(x1)ϕ̂n2(x2)|0〉 = i1n1−n2
F (x1− x2)− 1

2g
26

∫
m1λ1z1

6

∫
m2λ2z2

1
m1−n1
F (z1− x1)

×{Ūλ1
m1
Ūλ2
m2

[Uλ1
m1
Uλ2
m2
1
m2−m1
F (z2− z1)]

2}1m2−n2
F (z2− x2)+O(g4) (74)

using the symmetry

1n
F (x) = 1−nF (−x). (75)

The integrals overµ and λ can be integrated at this stage to give a multitude of
subdiagrams distinguished by different split times, which is the ultimate effect of the
discretization process. The various subdiagrams contributing to the loop diagram are shown
in figure 1, each with a numerical factor. The sum over all numerical factors for this diagram
should add up to 144. The full amplitude corresponding to the loop diagram is the sum
of each of these subdiagrams, times the numerical factor for each subdiagram, divided by
288, taking into account the original weighting factor of1

2. By using symmetry arguments
it can be shown that the 29 distinct diagrams in figure 1 reduce to the 12 diagrams shown
in figure 2.

The above rules are relevant to vacuum expectation values of discrete time-ordered
products of field operators. For particle scattering matrix elements the rules become simpler,
as discussed next.

5. Scattering amplitudes

We are now in a position to discuss particle scattering amplitudes. First we explain how the
scattering amplitude for a two–two particle scattering process based on the box diagram,
figure 3, is calculated, and then we shall state the results for the general scattering diagram.
This diagram was chosen because it involves a loop integration.

5.1. The two–two box scattering diagram

Consider twoincoming scalar particles with 3-momentaa, b respectively scattering via a
the box scattering diagram shown in figure 3, into twooutgoing particles with 3-momenta
c andd respectively. Each of these particles is associated with aθ parameter as given by
(45) which lies in the physical particle interval [0, π). Negative values of such a parameter
correspond to waves moving backwards in discrete time and would be interpreted in the
usual way as antiparticles in the Feynman–Stueckelberg interpretation. Both positive and
negative values occur in the discrete time Feynman propagators, just as in conventional
field theory.
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Figure 1. An expansion of the single-loop diagram in configuration space. There is a toal of
144 contributions, many of which can be equated and so we give the weighting for each type of
contribution. The apparently disconnected pieces in most of these types arise because we have
effectively split points in time when we wrote down the system function. In the limitT → 0
these splits would collapse and all of these diagrams then reduce to 144 copies of the first type,
corresponding to the conventional single-loop diagram.

Using the reduction formulae in section 4.1 we may write for the scattering reaction
amplitudeSif

Sif ≡ 〈0out|âout(d)âout(c)â
+
in(b)â

+
in(a)|0in〉R

= i4
( 4∏
j=1

∞∑
nj=−∞

∫
d3xj

)
e−in1θa+ia·c1e−in2θb+ib·x2ein3θc−ic·x3ein4θd−id·x4
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Figure 2. By using symmetry arguments, the various kinds of contributions shown in figure 1
can be simplified to the 12 varieties shown here. Again, the sum over all weightings is 144.

Figure 3. The two–two box scattering diagram used to illustrate the construction of the discrete
time diagrammatic rules.
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×−−→Kn1,a
−−→
Kn2,b
−−→
Kn3,c
−−→
Kn4,d〈0out|T̃ ϕ̂n1(x1)ϕ̂n2(x2)ϕ̂n3(x3)ϕ̂n4(x4)|0in〉 (76)

where
−−→
Kn1,a ≡ 0−1(a)(Un1 − 2η(a)+ U−1

n1
) (77)

with

0(a) ≡ 6T

6+ T 2E2
a

Ea ≡
√
a · a+ µ2 η(a) ≡ 6− 2T 2E2

a

6+ T 2E2
a

= cosθa (78)

and similarly for the other particles.
Next we expand the 4-point function according to the rules outlined in section 4.3 and

consider for the purposes of this discussion only the contribution associated with the box
diagram of figure 3, namely

〈0out|T̃ ϕ̂n1(x1)ϕ̂n2(x2)ϕ̂n3(x3)ϕ̂n4(x4)|0in〉|BOX = (igT )4
( 4∏
j=1

6

∫
mjλjzj

iU
λj
mj1

mj−nj
F (zj − xj )

)
×[Uλ2

m2
Uλ1
m1
1
m2−m1
F (z2− z1)][U

λ3
m3
Uλ2
m2
1
m3−m2
F (z3− z2)]

×[Uλ4
m4
Uλ3
m3
1
m4−m3
F (z4− z3)][U

λ1
m1
Uλ4
m4
1
m1−m4
F (z1− z4)]. (79)

The next step is to do thexj integrals, converting the 2-point functions on each external
leg of the diagram to its momentum space form, using

1̃n
F (p) =

∫
dx eip·x1n

F (x). (80)

Then we use the result
−−→
Kn,p1̃

n
F (p) = −δn (81)

taking care to bring the operators and summations into the brackets whenever theUλ
m

operators occur. This effectively amputates the external legs of the diagram. Then we
can immediately carry out the summations over the external integersni and arrive at the
simplified form

Sif = (gT )4
( 4∏
j=1

∞∑
mj=−∞

∫ 1

0
dλj

∫
d3zj

)
eia·z1+ib·z2−ic·z3−id·z4

×{Uλ1
m1

e−im1θa}{Uλ2
m2

e−im2θb}{Uλ3
m3

eim3θc}{Uλ4
m4

eim4θd}
×[Uλ2

m2
Uλ1
m1
1
m2−m1
F (z2− z1)][U

λ3
m3
Uλ2
m2
1
m3−m2
F (z3− z2)]

×[Uλ4
m4
Uλ3
m3
1
m4−m3
F (z4− z3)][U

λ1
m1
Uλ4
m4
1
m1−m4
F (z1− z4)]. (82)

Now we use the representation of the propagator

1n
F (x) ≡

1

(2π)4

∫
d3k

∫ π

−π

dθ

T
e−inθ+ik·x1̃F (k, θ) (83)

and evaluate thezi integrals to find

Sif = g4(2π)3δ3(a+ b− c− d)
( 4∏
j=1

∞∑
mj=−∞

∫ 1

0
dλj

1

2π

∫ π

−π
dθj

)

×
∫

d3k

(2π)3
{Uλ1

m1
e−im1θa}{Uλ2

m2
e−im2θb}{Uλ3

m3
eim3θc}{Uλ4

m4
eim4θd}

×[Uλ2
m2
Uλ1
m1

e−i(m2−m1)θ11̃F (k, θ1)][U
λ3
m3
Uλ2
m2

e−i(m3−m2)1̃F (k + b, θ2)]

×[Uλ4
m4
Uλ3
m3

e−i(m4−m3)1̃F (k + b− c, θ3)][U
λ1
m1
Uλ4
m4

e−i(m1−m4)1̃F (k − a, θ4)].

(84)
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Here we see the appearance of overall linear momentum conservation, as expected. Next
we use the result

Uλ
meimθ = eimθfλ(θ) (85)

where

fλ(θ) ≡ λeiθ + λ̄ (86)

to find

Sif = g4(2π)3δ3(a+ b− c− d)
( 4∏
j=1

∞∑
mj=−∞

∫ 1

0
dλj

1

2π

∫ π

−π
dθj

)

×
∫

d3k

(2π)3
e−im1θaf ∗λ1

(θa)e
−im2θbf ∗λ2

(θb)e
im3θcfλ3(θc)e

im4θdfλ4(θ4)

×ei(m1−m2)θ1fλ1(θ1)f
∗
λ2
(θ1)1̃F (k, θ1)e

i(m2−m3)θ2fλ2(θ2)f
∗
λ3
(θ2)1̃F (k + b, θ2)

×ei(m3−m4)θ3fλ3(θ3)f
∗
λ4
(θ3)1̃F (k + b− c, θ3)

×ei(m4−m1)θ4fλ4(θ4)f
∗
λ1
(θ4)1̃F (k − a, θ4). (87)

We are now able to perform the summations over themi. We notice that each summation
gives a Fourier series representation of the periodic Dirac delta, namely

∞∑
m=−∞

eimx = 2π
∞∑

m=−∞
δ(x + 2mπ) ≡ 2πδP (x) (88)

and so we find

Sif = g4(2π)4δP (θa + θb − θc − θd)δ3(a+ b− c− d)
( 4∏
j=1

∫ 1

0
dλj

)

×
∫

d3k

(2π)4

∫ π

−π
dθ f ∗λ1

(θa)f
∗
λ2
(θb)fλ3(θc)fλ4(θ4)fλ1(θ)f

∗
λ2
(θ)1̃F (k, θ)

×fλ2(θ + θb)f ∗λ3
(θ + θb)1̃F (k + b, θ + θb)fλ3(θ + θb − θc)

×f ∗λ4
(θ + θb − θc)1̃F (k + b− c, θ + θb − θc)fλ4(θ − θa)

×f ∗λ1
(θ − θa)1̃F (k − a, θ − θa). (89)

The crucial significance of this step is that we see the appearance of a conservation rule for
the parametersθ . This is despite the non-existence of a Hamiltonian in our formulation and
the fact that we have not constructed a Logan invariant for the fully interacting system.

We may go further and apply theλi integrals. We define thevertex function

V (θa, θb) ≡
∫ 1

0
dλ f ∗λ (θa)f

∗
λ (θb)fλ(θa + θb)

= cos(θa + θb)+ cos(θa)+ cos(θb)+ 3

6
(90)

and so get the final result

Sif = g4(2π)4δP (θa + θb − θc − θd)δ3(a+ b− c− d)

×
∫

d3k

(2π)4

∫ π

−π
dθ V (θa,−θ)V (θb, θ)V (θ + θb,−θc)V (−θd, θa − θ)

×1̃F (k, θ)1̃F (k + b, θ + θb)1̃F (k + b− c, θ + θb − θc)
×1̃F (k − a, θ − θa). (91)
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Figure 4. A plot of the vertex functionV (x, y), where each argument lies in the interval
[−π, π ]. The vertex function takes its maximum value of unity whenx = y = 0, which
corresponds to the continuous time limitT → 0. The vertex function never falls below the
value 1

4 .

A diagrammatic representation of the above shows thatθ -conservation occurs at every
vertex.

5.2. The vertex functions

The vertex functionsV (θ1,θ2) represent a degree of softening at each vertex arising from our
temporal point splitting via the system function. At each vertex the sum of theincomingθ
parameters is always zero, including inside loops, so the vertex function always depends on
two parameters only. If we had aϕ4 interaction we expect the vertex function will depend
on three parameters, and so on. A graphical presentation of the vertex function is given in
figure 4. The vertex function has a minimum value of one quarter and attains its maximum
value of unity when theθ parameters are each zero. This corresponds to the continuous
time limit T → 0.

5.3. The propagators

The propagators used in the final amplitude (91) are readily found using the basic definition

1̃F (p, θ) ≡ T
∞∑

n=−∞
einθ 1̃n

F (p) (92)

and the equation

(Un − 2ηE + U−1
n )1̃n

F (p) = −0Eδn (93)

then

2(cosθ − ηE)1̃F (p, θ) = −T 0E. (94)

Now we need to choose the correct solution for Feynman scattering boundary conditions.
This is done by referring to the Feynman−iε prescription, which corresponds to the
replacement ofE2 in the above byE2− iε. This in turn corresponds to the replacement

ηE → ηE + iε. (95)
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Hence we arrive at the desired solution

1̃F (p, θ) = −T 0E
2(cosθ − ηE − iε)

(96)

which holds for both the elliptic region−1 < ηE < 1 and for the hyperbolic region
−2 < ηE < −1. It may be verified that the indexed propagators (23) are given by the
integrals

1̃n
F (p) =

1

2π

∫ θ

−θ
dθ e−inθ −0E

2(cosθ − ηE − iε)

= 0E

2π i

∮
dz

zn(z2− 2(ηE + iε)z + 1)
(97)

the contour of integration being the unit circle in the anticlockwise sense. We find for
example

1̃n
F (p) =

0E

2i sinθE
e−i|n|θE (98)

in the case of the elliptic regime,T 2E2 < 12, and

1̃n
F (p) =

(−1)n+10E

2 sinhγE
e−|n|γE (99)

in the hyperbolic regime,T 2E2 > 12. Here we make the parametrization

cos(ζ ) ≡ ηE = 6− 2T 2E2

6+ T 2E2
(100)

whereζ is a complex parameter running just below the real axis from the origin toπ (when
ζ is written asθE) and then fromπ to π − i ln(2+ √3) (when ζ is written in the form
π − iγE).

If in (96) we introduce the variablep0 related toθ by the rule

cosθ ≡ 6− 2p2
0T

2

6+ p2
0T

2
sign(θ) = sign(p0) (101)

then we find

1̃F (p, θ) = 1

p2
0 − p2−m2+ iε

+ T 2p2
0

6(p2
0 − p2−m2+ iε)

(102)

an exact result. From this we see the emergence of Lorentz symmetry as an approximate
symmetry of the mechanics. Ifp0 in the above is taken to represent the zeroth component
of a four vector, with the components ofp representing the remaining components, then
we readily see that the first term on the right-hand side of (102) is Lorentz invariant. The
second term is not Lorentz invariant, but we note it is proportional toT 2. If, as we expect,
T represents an extremely small scale, such as the Planck time or less, then it is clear
that Lorentz symmetry should emerge as an extremely good approximate symmetry of our
mechanics.
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5.4. Comments

The significance of our results is that not only is spatial momentum conserved during a
scattering process, as expected from the Maeda–Noether [1, 9] theorem, but the sum of the
θ parameters of the incoming particles is conserved. This is the discrete time analogue of
energy conservation, since in the limitT → 0 we note

lim
T→0

θp

T
= Ep =

√
p · p+ µ2. (103)

The θ conservation rule is unexpected at first sight in that we have not discussed as yet
any Logan invariant for the full interacting system function. It appears that the analogue of
energy conservation occurs here because of the way in which we have set up our incoming
and outgoing states and allowed the scattering process to take place over infinite time. The
result would probably not hold for scattering over finite time intervals, which would be
the analogue of the time-energy uncertainty relation in conventional quantum theory. In
essence, the LSZ scattering postulates relate the Logan invariant forin-states to the Logan
invariant for theout-states in such a way that knowledge of the Logan invariant for the
intermediate time appears not to be required. This is true of the scattering formalism as we
have demonstrated, but the bound state question would be a different matter.

Although the conservation ofθ -parameters during scattering processes comes as a
surprise it is a welcome one. Before the calculations were performed explicitly, it was
believed that the energy conservation rule in continuous time scattering processes would
only arise in the limitT → 0. Such a phenomenon was discussed by Lee [11] in his
discrete time mechanics, which differs from ours in that his time intervals are determined
by the dynamics. That there is an exact conservation rule forsomethingin our discrete
time scattering processes regardless of the magnitude ofT is an indicator of the existence
of some Logan invariant. The surprise is that the something turns out to be the sum of the
incomingθ parameters, which suggests that our parametrization of the harmonic oscillator
discussed inpaper I was a fortuitously good one.

We point out here that our parameterθ is really an angle, unlike conventional energy
E, or p0 in the above, and there is an implied periodicity. However, because there is
no concept of Hamiltonian or energy in our theory, this periodicity does not cause any
physically relevant side effects. Incoming or outgoing particles will beon-shell in the sense
that their associatedθ parameter can be restricted to take a value in the interval [0, π).
Given this, we may then invert (101) to find

θ = p0T − 1

24
p3

0T
3+O(T 5). (104)

Another welcome feature is the modification of the propagators and the appearance
of vertex softening in the scattering diagrams. A detailed discussion of the effects these
features have on the divergences of various loop integrals found in the conventional Feynman
diagram programme will be reserved for a subsequent paper.

The scattering amplitude found above for figure 3 reduces to the correct continuous
time amplitude in the limitT → 0.

5.5. Rules for scattering amplitudes

We are now in a position to use our experience with the box diagram figure 3 to write down
the general rules for scattering diagrams. Consider a scattering process witha incoming
particles with momentap1,p2, . . . ,pa respectively, andb outgoing particles with momenta
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q1, q2, . . . qb respectively. Make a diagrammatic expansion in the traditional manner of
Feynman. For each diagram do the following:

(1) at each vertex, conserve linear momentum andθ parameters, i.e. the algebraic sum
of incoming momenta is zero and the algebraic sum of theincoming θ parameters is zero;

(2) at each vertex associate a factor

igT V (θ1, θ2) (105)

whereθ1 andθ2 are any two of the threeincoming θ parameters;
(3) for each internal line carrying momentumk andθ parameter, associate a factor

iT −11̃F (k, θ) (106)

(4) for each loop integral, a factor∫
d3k

(2π)4

∫ π

−π
dθ (107)

(5) an overall momentum-θ parameter conservation factor

(2π)4δP (θp1 + · · · + θpa − θq1 − · · · θqb)δ3(p1+ · · · + pa − q1− · · · − qb) (108)

(6) a weight factorω for each diagram, exactly as for the standard Feynman rules.

6. Examples

We are now in a position to give a number of examples of scattering amplitude calculations
using the above rules. We restrict our attention toϕ3 theory as an illustrative example.
QED and the associated discrete time Feynman rules will be the subject of the next paper
in this series,paper IV.

6.1. Figure 5(a)

Consider the basic single vertex diagram of figure 5(a) with particles with linear momentum
a, b fusing to form a particle with linear momentumc. Overlooking the fact that this process
gives zero for on-shell momenta our discrete time Feynman rules give

S5a = igT (2π)4δP (θa + θb − θc)δ3(a+ b− c)V (a, b). (109)

6.2. Figure 5(b)

This diagram has a single loop. We find

S5b = −g3(2π)4δP (θa + θb − θc)δ3(a+ b− c)
×
∫

d3k

(2π)4

∫ π

−π
dθ V (θa,−θ)V (θb, θ − θc)V (−θc, θ) 1̃F (k, θ)

×1̃F (k − c, θ − θc)1̃F (k − a, θ − θa). (110)

The nature of this diagram will be discussed in detail in subsequent papers.
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Figure 5. A number of diagrams to which our discrete time scattering rules have been applied.

6.3. Figures 5(c)–(e)

The orderg2 two–two scattering diagrams figures 5(c)–(e) give

S5cde = −g2T (2π)4δP (θa + θb − θc − θd)δ3(a+ b− c− d)
×{V (θa,−θc)V (θb,−θd)1̃F (a− c, θa − θc)
+V (θa, θb)V (−θc,−θd)1̃F (a+ b, θa + θb)
+V (θa,−θd)V (θb,−θc)1̃F (a− d, θa − θd)}. (111)
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6.4. Figure 5(f )

This diagram is an example of a higher-order tree diagram process involving no loops. We
find

S5f = ig3T (2π)4δP (θa + θb − θc − θd − θe)δ3(a+ b− c− d− e)
×V (θa,−θc)V (θb,−θd)V (θa − θc, θb − θd)
×1̃F (a− c, θa − θc)1̃F (d− b, θd − θb). (112)

6.5. Figure 5(g)

This diagram has a simple propagator loop and gives

S5g = 1
2g

4(2π)4δP (θa + θb − θc − θd)δ3(a+ b− c− d)1̃F (a+ b, θa + θb)

×
{

1

(2π)4

∫
d3k

∫ θ

−θ
dθ V (θa, θb)V (θa + θb,−θ)V (θ,−θa − θb)

×V (−θc − θd)1̃F (k, θ)1̃(k − a− b, θ − θc − θd)
}
1̃F (a+ b, θa + θb).

(113)

The question of the divergence of this integral will be reserved for a subsequent paper.

7. Concluding remarks

The application of the principles outlines inpapers I and II to scalar field theory has
indicated that the conventional programme of constructing Feynman rules for scattering
amplitudes goes over well into discrete time. Of course there are differences, and it is to be
hoped that some of these will alleviate if not overcome some of the divergence problems
of the conventional field theory programme. An important point is that there occurs in our
approach a natural scale provided byT . It is possible that this will provide a renormalization
cutoff scale which will not have to be introduced by hand. Issues of renormalization and
divergence will be discussed in a later paper.

A particularly important result which was not anticipated before the diagrams were
calculated is the conservation of the totalθ parameters over a scattering process. This
occurs even though no Logan invariant corresponding to the total Hamiltonian has been
found for the fully interacting theory.

An important point to consider is the question of relativistic covariance. Clearly our
process of temporal discretization breaks Lorentz covariance, and with it the Poincaré
algebra. However, it should be admitted by any critic that there is actually no empirical
evidence that special relativity holds all the way up to infinite momentum. It is only an
abstraction from limited experience that it does. Therefore, the Poincaré algebra has no
more than the status of a really useful synthesis of limited experience. By requiring our
parameterT to be small enough we should be able to reproduce all of the good predictions of
continuous time mechanics, with the possibility of alleviating, if not removing, those aspects
which are known to cause problems, such as divergences in the renormalization programme.
Moreover, we have given a principle based on the cosmic background radiation field for
finding a unique local inertial frame in which time is discretized.

Finally, if our discrete time programme could be caught out in a fatal way, then we
would have what amounts to a proof that time is really continuous. This in itself makes
our investigation a worthwhile one.
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